NumPy:
NumPy (Numerical Python) is a fundamental package for scientific computing in Python. It provides support for large, multi-dimensional arrays and matrices, along with a collection of mathematical functions to operate on these data structures.
1. Installation of NumPy
To install NumPy, use the following command:
pip install numpy
If you are using Jupyter Notebook, install it using:
!pip install numpy
To verify the installation, run:
import numpy as np
print(np.__version__)
2. Creating NumPy Arrays
2.1 Creating a Basic Array
import numpy as np
arr = np.array([1, 2, 3, 4, 5])
print(arr)
Output: [1 2 3 4 5]
2.2 Creating a 2D Array (Matrix)
matrix = np.array([[1, 2, 3], [4, 5, 6]])
print(matrix)
Output:
[[1 2 3]
[4 5 6]]
2.3 Creating an Array of Zeros and Ones
zeros = np.zeros((3, 3))
ones = np.ones((2, 4))
print("Zeros Array:\n", zeros)
print("Ones Array:\n", ones)
2.4 Creating an Array with a Range of Numbers
arr = np.arange(1, 10, 2)
print(arr)
Output: [1 3 5 7 9]
2.5 Creating an Array with Linearly Spaced Numbers
arr = np.linspace(0, 10, 5)
print(arr)
Output: [ 0. 2.5 5. 7.5 10. ]
3. Array Attributes
arr = np.array([[1, 2, 3], [4, 5, 6]])
print("Shape:", arr.shape)
print("Size:", arr.size)
print("Data Type:", arr.dtype)
print("Number of Dimensions:", arr.ndim)
4. Reshaping and Resizing
4.1 Reshaping Arrays
arr = np.arange(1, 10)
reshaped_arr = arr.reshape(3, 3)
print(reshaped_arr)
4.2 Flattening an Array
flattened = reshaped_arr.flatten()
print(flattened)
5. Indexing and Slicing
5.1 Indexing
arr = np.array([10, 20, 30, 40, 50])
print(arr[2])
Output: 30
5.2 Slicing
print(arr[1:4]) # Output: [20 30 40]
5.3 Indexing in a 2D Array
matrix = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print(matrix[1, 2]) # Output: 6
6. Mathematical Operations
arr1 = np.array([1, 2, 3])
arr2 = np.array([4, 5, 6])
print(arr1 + arr2)
7. Broadcasting
arr = np.array([1, 2, 3])
scalar = 10
print(arr + scalar)
8. Random Number Generation
8.1 Generating Random Numbers
rand_nums = np.random.rand(3)
print(rand_nums)
9. Linear Algebra with NumPy
A = np.array([[1, 2], [3, 4]])
B = np.array([[5, 6], [7, 8]])
print(np.dot(A, B))
10. Saving and Loading Data
10.1 Saving to a File
arr = np.array([1, 2, 3, 4, 5])
np.save("data.npy", arr)
10.2 Loading from a File
loaded_arr = np.load("data.npy")
print(loaded_arr)
Conclusion
NumPy is a powerful library for numerical computing in Python. It provides essential features for handling large datasets, performing mathematical operations, and conducting data analysis efficiently.