🔹 Object-Oriented Programming (OOPs)

Definition: Object-Oriented Programming (OOP) is a programming paradigm based on the concept of “objects”, which can contain data (attributes or properties) and code (methods or functions). It allows developers to create modular, reusable, and organized code.


🔸 Classes and Objects

ClassA blueprint for creating objects. Defines attributes and methods.
ObjectAn instance of a class. It holds actual data and behaviors.

🔹Example: Class and Object

class Employee:
    pass

emp = Employee()
print(type(emp))  # <class '__main__.Employee'>
# Creating a class and an object
class Car:
    def __init__(self, brand, model, year):
        self.brand = brand
        self.model = model
        self.year =  year

    def display_info(self):
        print(f"Car Brand: {self.brand}, Model: {self.model}")

car1 = Car("Toyota", "Camry", 2023)
print(car1.display_info())


Output:

Car Brand: Toyota, Model: Camry
None

Instance Variables and Methods

Definition:

  • Instance Variables are tied to a specific object
  • Instance Methods operate on instances and can access/modify instance variables
class Customer:
    def __init__(self, name, age):
        self.name = name
        self.age = age

    def thank(self):
        print(f"Hi {self.name}, thank you for visiting our store!")

cust1 = Customer("John", 3)
cust1.thank()

cust2 = Customer("Lucy", 4)
cust2.thank()


Output:

Hi John, thank you for visiting our store!
Hi Lucy, thank you for visiting our store!

Core Principles of OOP

  • Encapsulation: Bundling data and methods that operate on the data within one unit (class).
  • Abstraction: Hiding internal implementation and exposing only necessary details.
  • Inheritance: A class can inherit attributes and methods from another class.
  • Polymorphism: Use a shared interface for multiple forms (different behavior).

Encapsulation: : Encapsulation restricts direct access to variables. Use getters and setters to control access.

class Person:
    def __init__(self):
        self.__age = 0  # private variable

    def get_age(self):
        return self.__age

    def set_age(self, age):
        if age > 0:
            self.__age = age

p = Person()
p.set_age(25)
print(p.get_age())  # 25

🔐 Access Modifiers in Python: Python doesn't have strict access control like languages such as Java or C++. Instead, it uses conventions to indicate the intended level of access to variables and methods.

  • Public: name
  • Protected: _name
  • Private: __name

Examples

# Public
class Person:
    def __init__(self):
        self.name = "Alice"

p = Person()
print(p.name)  # Allowed

# Protected
class Person:
    def __init__(self):
        self._status = "active"

p = Person()
print(p._status)  # Discouraged

# Private
class Person:
    def __init__(self):
        self.__age = 25

p = Person()
# print(p.__age)  # Error
print(p._Person__age)  # Name mangling workaround

Access Modifiers Summary

ModifierSyntaxAccess LevelUsage
PublicnameEverywhereDefault
Protected_nameSubclass & internalConvention
Private__nameClass onlyName mangled

Python Access Modifiers Example

class Person:
    def __init__(self, name, age):
        self.name = name
        self._status = "active"
        self.__age = age

    def get_age(self):
        return self.__age

    def set_age(self, age):
        if age > 0:
            self.__age = age

    def _display_status(self):
        print(f"Status: {self._status}")

    def __private_info(self):
        print("This is private information.")

    def show_private_info(self):
        self.__private_info()

p = Person("Alice", 30)
print("Name:", p.name)
print("Age:", p.get_age())
p.set_age(35)
print("Updated Age:", p.get_age())
print("Status:", p._status)
p._display_status()
p.show_private_info()


Output:

Name: Alice
Age: 30
Updated Age: 35
Status: active
Status: active
This is private information.

Abstraction: Abstraction hides internal details and shows only the functionality using abstract classes and methods.

from abc import ABC, abstractmethod

class Shape(ABC):
    @abstractmethod
    def area(self):
        pass

class Circle(Shape):
    def area(self):
        print("Area of circle")

c = Circle()
c.area()


Output:

Area of circle

Inheritance: Inheritance allows a class to derive properties and behaviors from another class. The base class (parent class) provides properties and behaviors, while the child class (sub class) inherits and extends them.


# Basic Inheritance Example (Base Class)
class Employee:
    def __init__(self, name, emp_id):
        self.name = name
        self.emp_id = emp_id

    def display(self):
        print(f"Name: {self.name}, ID: {self.emp_id}")

# Inheritance (Single Inheritance)
class Manager(Employee):
    def __init__(self, name, emp_id, department):
        super().__init__(name, emp_id)
        self.department = department

    def display(self):
        super().display()
        print(f"Department: {self.department}")

# Multiple Inheritance
class TechnicalSkills:
    def __init__(self, skills):
        self.skills = skills

    def show_skills(self):
        print(f"Skills: {', '.join(self.skills)}")

class Developer(Employee, TechnicalSkills):
    def __init__(self, name, emp_id, skills):
        Employee.__init__(self, name, emp_id)
        TechnicalSkills.__init__(self, skills)

    def display(self):
        Employee.display(self)
        self.show_skills()

# Sample Usage to test the above code snippets for inheritance
# Single Inheritance
mgr = Manager("Alice", 101, "HR")
mgr.display()

# Multiple Inheritance
dev = Developer("Bob", 202, ["Python", "Django", "REST API"])
dev.display()

Output:

Name: Alice, ID: 101
Department: HR
Name: Bob, ID: 202
Skills: Python, Django, REST API

Polymorphism: Polymorphism means the same method name can behave differently in different classes.

Polymorphism Example:

class Employee:
    def __init__(self, name):
        self.name = name

    def work(self):
        print(f"{self.name} is doing general employee tasks.")

class Manager(Employee):
    def work(self):
        print(f"{self.name} is managing team and projects.")

class Developer(Employee):
    def work(self):
        print(f"{self.name} is writing code and fixing bugs.")

class Designer(Employee):
    def work(self):
        print(f"{self.name} is creating UI/UX designs.")

# Usage for the above polymorphism code snippet
# List of different employee types
employees = [Manager("Alice"), Developer("Bob"), Designer("Charlie")]

# Polymorphic behavior: same method name, different results
for emp in employees:
    emp.work()


Output:

Alice is managing team and projects.
Bob is writing code and fixing bugs.
Charlie is creating UI/UX designs.

Polymorphism with ABC (Abstract Base Class)

from abc import ABC, abstractmethod

class Employee(ABC):
    def __init__(self, name):
        self.name = name

    @abstractmethod
    def work(self):
        pass

class Manager(Employee):
    def work(self):
        print(f"{self.name} is overseeing team operations.")

class Developer(Employee):
    def work(self):
        print(f"{self.name} is developing software solutions.")

class Intern(Employee):
    def work(self):
        print(f"{self.name} is learning and assisting in tasks.")

employees = [Manager("Alice"), Developer("Bob"), Intern("Charlie")]
for emp in employees:
    emp.work()

Output:
Alice is overseeing team operations.
Bob is developing software solutions.
Charlie is learning and assisting in tasks.

Dunder (Double Underscore) Methods (Magic Methods)

class Book:
    def __init__(self, title):
        self.title = title

    def __str__(self):
        return f"Book title is {self.title}"

    def __len__(self):
        return len(self.title)

b = Book("Python Programming")
print(str(b)) # Book title is Python Programming
print(len(b)) # 18

🔹 Project: Employee Management System

This demonstrates all fource core OOP principles - Encapsulation, Abstraction, Inheritance, and Polymorphism

from abc import ABC, abstractmethod

# ABSTRACTION: Define an abstract base class
class Employee(ABC):
    def __init__(self, name, emp_id, base_salary):
        self._name = name
        self._emp_id = emp_id
        self._base_salary = base_salary

    def get_details(self):
        return f"ID: {self._emp_id}, Name: {self._name}"

    @abstractmethod
    def calculate_salary(self):
        pass

# INHERITANCE: FullTimeEmployee inherits from Employee
class FullTimeEmployee(Employee):
    def __init__(self, name, emp_id, base_salary, bonus):
        super().__init__(name, emp_id, base_salary)
        self._bonus = bonus

    def calculate_salary(self):
        return self._base_salary + self._bonus

# INHERITANCE: PartTimeEmployee inherits from Employee
class PartTimeEmployee(Employee):
    def __init__(self, name, emp_id, hourly_rate, hours_worked):
        super().__init__(name, emp_id, 0)
        self._hourly_rate = hourly_rate
        self._hours_worked = hours_worked

     # POLYMORPHISM: Different implementation of calculate_salary
    def calculate_salary(self):
        return self._hourly_rate * self._hours_worked

# Demonstration
def print_salary(employee: Employee):
    print(f"{employee.get_details()} => Salary: ${employee.calculate_salary()}")

# Test the project
emp1 = FullTimeEmployee("Alice", 101, 5000, 1200)
emp2 = PartTimeEmployee("Bob", 102, 20, 80)

print_salary(emp1)
print_salary(emp2)

Output:

ID: 101, Name: Alice => Salary: $6200
ID: 102, Name: Bob => Salary: $1600

🔍 Concepts in Action:

Encapsulation: _name, _emp_id, and salary fields are encapsulated (prefixed with _).

Abstraction: Employee is an abstract class with a common interface calculate_salary.

Inheritance: FullTimeEmployee and PartTimeEmployee inherit from Employee.

Polymorphism: print_salary() uses polymorphism to call the appropriate calculate_salary() method based on the object type.

✅ What is ABC in class Employee(ABC): • ABC stands for Abstract Base Class. • It comes from the built-in abc module in Python:

from abc import ABC