Matplotlib:
Matplotlib is a powerful visualization library in Python used for creating static, animated, and interactive plots. It is widely used in data science, machine learning, and engineering fields to visualize data effectively.
1. Installation and Setup
To install Matplotlib, use:
pip install matplotlib
To check if Matplotlib is installed:
import matplotlib
print(matplotlib.__version__)
2. Basic Components of Matplotlib
- Figure: The overall container for the entire visualization.
- Axes: The area where data is plotted.
- Axis: The X and Y axes with ticks and labels.
- Legend: Describes elements in the plot.
- Labels: Titles and labels for axes.
- Grid: Provides a reference grid to improve readability.
3. Creating a Simple Line Plot
import matplotlib.pyplot as plt
x = [1, 2, 3, 4, 5]
y = [10, 20, 25, 30, 50]
plt.plot(x, y, marker='o', linestyle='-', color='b', label="Line Graph")
plt.title("Simple Line Plot")
plt.xlabel("X Axis")
plt.ylabel("Y Axis")
plt.legend()
plt.show()
4. Using Object-Oriented Interface
fig, ax = plt.subplots()
ax.plot(x, y, marker='o', linestyle='-', color='b', label="Line Graph")
ax.set_title("Object-Oriented Plot")
ax.set_xlabel("X Axis")
ax.set_ylabel("Y Axis")
ax.legend()
plt.show()
5. Customizing Plots
5.1 Adding Multiple Lines
y2 = [5, 15, 35, 40, 45]
plt.plot(x, y, 'ro-', label="Dataset 1")
plt.plot(x, y2, 'gs--', label="Dataset 2")
plt.legend()
plt.show()
6. Bar Charts
categories = ['A', 'B', 'C', 'D']
values = [20, 35, 30, 40]
plt.bar(categories, values, color='orange')
plt.show()
7. Scatter Plots
plt.scatter(x, y, color='red', marker='*', s=100)
plt.show()
8. Histogram
import numpy as np
data = np.random.randn(1000)
plt.hist(data, bins=30, color='purple', edgecolor='black')
plt.show()
9. Pie Charts
labels = ['Apple', 'Banana', 'Cherry', 'Date']
sizes = [30, 20, 40, 10]
plt.pie(sizes, labels=labels, autopct='%1.1f%%', startangle=140)
plt.show()
10. Subplots
fig, axes = plt.subplots(1, 2, figsize=(10, 4))
axes[0].plot(x, y, 'r')
axes[1].bar(x, y2, color='b')
plt.show()
11. Adding Grid, Annotations, and Text
plt.plot(x, y, marker='o')
plt.grid(True, linestyle='--', linewidth=0.5)
plt.annotate('Max Value', xy=(5, 50), xytext=(3, 40),
arrowprops=dict(facecolor='black', arrowstyle='->'))
plt.show()
12. Saving Figures
plt.savefig("my_plot.png", dpi=300, bbox_inches="tight")
Conclusion
Matplotlib is a versatile and powerful visualization tool in Python. From simple line charts to complex multi-plot figures, it allows for extensive customization and presentation of data. By mastering Matplotlib, you can effectively communicate insights and trends in your data.